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ABSTRACT 

Results a r e  presented of an evaluation of several ephemeris representations 

for the Multimission Modular Spacecraft (MMS). Primary evaluation cri teria 

are the accuracy and onboard computational cost, with particular reference to 

the Earth Observation Satellite (EOS) mission. Representations in Cartesian 

coordinates, equinoctial elements, and orbital quaternions a r e  examined. In 

particular, Fourier-power series representations are evaluated primarily for 

extrapolation and data compression purposes, and Lagrange and Hermite poly- 

nomial representations are evaluated primarily for interpolation purposes. 
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SECTION 1 - INTRODUCTION 

With the increasing number of spacecraft missions and the accompanying require- 

ment for detailed mission design, the need for standardizing spacecraft design is 

becoming increasingly critical. As  a result, the concept of a Multimission 

Modular Spacecraft (MMS) has been developed. This spacecraft will use stand- 

ardized, modularized hardware components and onboard software whiah will 

be adaptable to a variety of missions (References 1, 2). 

1 

One of the goals of the MMS design is 72-hour autonomy from ground support. 

Autonomy implies the availability of both orbit and attitude information onboard 

the spacecraft, primarily to enable the spacecraft to perform attitude control 

and secondarily for onboard computation of pointing maneuver controls. The 

attitude control will be performed onboard as follows. An onboard digital 

processor will compute commands for the attitude control components (such as 

reaction wheels) based on the current and the target inertial attitudes. 

present, all MMS missions a r e  planned to employ three-axis stabilized space- 

craft.) The current inertial attitude will be computed using a digital filter 

that processes gyro data along with s ta r  sensor o r  Sun sensor data. The target 

inertial attitude will be transmitted periodically to the onboard processor by 

the ground station? For  star- o r  Sun-pointing missions, the target attitude 

is constant except during slewing maneuvers. However, for Earth-pointing 

missions, the target attitude is orbital position dependent. Therefore, the 

ground update in this case must include accurate orbital information. Orbital 

information is  also needed onboard the spacecraft for other reasons, which 

are summarized below. 

(At 

IFormerly Low Cost Modular Spacecraft (LCMS). 

2Alternatively, for Earth-pointing missions, i t  coulc be computec from an 
ephemeris determined onboard from the Global Positioning System (GPS) 
signals (Appendix C and Reference 3) .  
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recurring computations in the attitude control function on EOS, which is performed 

in terms of quaternions (Reference 4). 

Section 3 is devoted to  an examination of the relative computational costs of var- 

ious representations. An estimate is made of the computational times which are 

required on the NASA Standard Spacecraft Computer (NSSC) for interpolation and 

for conversion from the selected type of elements to  a form suitable for onboard 

use. Core requirements are also discussed based on the results of Section 2. 

Section 4 summarizes the results of this study and presents preliminary conclu- 

sions. 



missions typified by the Earth Observation Satellite (EOS) with a 700-kilometer 

altitude and a circular Sun-synchronous orbit, and it must agree with the predicted 

orbit to within about 10 kilometers for the star- and Sun-pointing missions typi- 

fied by the Gamma Ray Explorer (GRE) and the Solar Maximum Mission (SMM)l 

with a 500- to 550-kilometer altitude and a 30-degree inclination circular orbit. 

The desirable span over which the representation must maintain this accuracy is 

3 to 4 days, with the capability of a l-day extrapolation (possibly with reduced 

accuracy). Appendix A discusses the basis for these accuracy requirements. 

In this memorandum, results from an evaluation of several ephemeris represen- 

tation techniques are presented addressing the following areas: 

0 Interpolation accuracy 

0 Extrapolation accuracy 

0 Onboard computational simplicity and speed 

0 Onboard core requirement 

0 ' Data transmission from the ground (amount and frequency) 

0 Standardization and adaptability of the onboard software 

0 Compatibility with orbit determination algorithms using the Global 

Positioning System (GPS) measurements as input (Reference 3) 

Results of an evaluation of the accuracy of several ephemeris representations 

are presented in Section 2. Schemes that employ classical and equinoctial orbital 

elements, Cartesian coordinates, and orbital quaternions3 a re  examined. The 

quaternion form of orbit description is motivated by the possibility of reducing the 

'Due to a recent scientific data annotation requirement, ephemeris representation 
accuracies of 100 meters for the cross-track and radial components and 500 me- 
t e r s  for the along-track component are needed. This requirement has not been 
accounted for in this document. 

sical elements. 
2See Equation (3-20) for the definition of equinoctial elements in terms of the clas- 

3See Equations (3-18) and (3-19) for the definition of orbital quaternions. 
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Primary reason: 

0 Attitude control (Earth-pointing missions only) 

Secondary reasons: 

0 Computation of maneuvers for pointing antennas at a Tracking and 

Data Relay Satellite System (TDRSS) satellite 

0 Prediction of occultation of a celestial object by the Earth o r  the 

Moon 

0 Reference to the correct segment of the s tar  catalog (Earth-pointing 

miss ions) 

0 Computation of stellar o r  solar aberration factor due to  spacecraft 

velocity 

0 Computation of local geomagnetic field for preprocessing star 

tracker output and during attitude acquisition using Sun sensors 

and magnetometers 

0 Computation of dynamic misalignments among onboard sensors 

0 Annotation of picture and other scientific data gathered by payload 

sensors 

Therefore, the MMS operation will require orbit determination and prediction on 

the ground and transmission of a representation1 of the predicted orbit to the 

satellite. To satisfy MMS mission requirements, the representation must 

agree with the predicted orbit to within about 10  meters for the Earth-pointing 

'By a representation is  meant a method for approximating the original ephem- 
eris, such as a polynomial o r  a trigonometric series,  with a finite number of 
coefficients. U s e  of a representation permits transmission of a finite number 
of terms to the satellite from which the approximate orbital state a t  any 
desired time can be recovered using a relatively simple onboard algorithm. 
Neither integration of dynamical equations nor orbit determination from 
measurements is called for in this kind of onboard algorithm. 

1-2 



SECTION 2 - EVALUATION O F  EPHEMERIS REPRESENTATION ACCURACY 

The accuracy of several ephemeris representations is discussed in this section. 

Both interpolation and extrapolation accuracies are evaluated by comparison with 

a high precision ephemeris. The interpolators examined include Adams, Lagrange, 

and Hermite.' 

Representations in classical and equinoctial elements are evaluated in Section 2. 1. 

The equinoctial elements are a nonsingular set  of orbital elements particularly 

appropriate for the near-circular orbits under consideration (Reference 5). In 

addition, this set simplifies conversion to the quantities needed in the attitude 

control algorithm (see Section 3). 

Representations in Cartesian coordinates are evaluated in Section 2 . 2 .  Previously, 

orbital representations of Cartesian coordinates were used successfully to support 

other missions (References 6 and 7). 

coordinates is expected to  be directly compatible with the Global Positioning Sys- 

tem (GPS) data (Reference 3 and Appendix C). 

Further, representation of the Cartesian 

Section 2 . 3  discusses accuracy of an orbital quaternion representation. This rep- 

resentation describes the instantaneous orbital attitude and is ercpected to minimize 

the computations required in the EOS attitude control function (see Section 3). 

2.1 REPRESENTATIONS USING EQUINOCTIAL AND CLASSICAL ELEMENTS 

The accuracy of interpolation and extrapolation on mean elements is evaluated in 

Section 2.1 .1 .  Section 2 . 1 . 2  deals with interpolation and extrapolation on oscu- 

lating elements. 

'All three of these interpolators are related to polynomial representations. A 
Lagrange interpolator constrains the polynomial to agree with the original func- 
tion at selected grid points, a Hermite interpolator constrains both the function 
and its first derivative at all the grid points, while an Adams interpolator con- 
strains the function at one grid point and its first derivative at  all remaining grid 
points. 
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Evaluation results of mean element representations (Table 2-1) show that orbital 

e r ro r s  are of the order of the J2 perturbation, i. e. ,  around 7 kilometers, when 

mean elements are used.' The extrapolation accuracy is comparable to the inter- 

polation accuracy; in  fact, they a re  identical when converted mean elements a re  

used. Thus, the SMM mission requirement is adequately satisfied by the use of 

mean elements. 

2 . 1 . 2  Interpolation and Extrapolation on Osculating Elements 

In view of the results of the previous subsection, it is evident that in order to 

satisfy the 10-meter representation accuracy requirement of the Earth Obser- 

vation Satellite (EOS) mission, osculating rather than mean elements should 

be used. Due to the short-period effects present in the osculating elements, 

the interpolation grid interval in this case will have to be about two orders of 

magnitude smaller than that used with mean elements. Consequently, the 

number of terms transmitted every 4 days will be on the order of several thou- 

sand as compared with the 30 to 40 t e rms  needed for a mean element repre- 

sentation. On the other hand, the onboard software for  interpolation and con- 

version to a form suitable for use in the onboard computations will be nearly 

identical for mean and osculating element representations, with the exceptions 

that some logic to maintain a moving interpolation grid and some special 

extrapolation scheme will be needed when using osculating elements. 

An evaluation of interpolation accuracy using osculating elements was carried 

out, with emphasis on the EOS mission for which the nominal state vector is 

given in Table A-1. The results a r e  presented in Table 2.2. Both total and 

horizontal e r ro r s  are shown; however, only the horizontal e r ro r s  contribute 

to e r ro r s  in the attitude control of EOS (see Appendix A).  

From Table 2 . 2 ,  i t  is seen that when using double-precision arithmetic on 

the IBM System 360, the major part of the positional e r r o r  is in  the radial 

'Double-precision arithmetic was used on the IJ3A.I System 360/75. A final 
evaluation must use s ingle-pre cis ion arithmetic. 
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2.1.1 Interpolation and Extrapolation on Mean Elements 

The orbit may be described by mean orbital elements for lower precision mis- 

sions, such as star- o r  Sun-pointing missions with ephemeris representation 

accuracy requirements of about 10 kilometers. The advantage of using mean 

elements is that the data requirement is very small. Accordingly, with the 

Solar Maximum Mission (SMM) in view (see Table A-1 for nominal SMM orbital 

elements), the accuracy of interpolation and extrapolation on mean elements, 

classical o r  equinoctial, was evaluated using a variety of interpolators. The in- 

terpolators evaluated were: 

a Adams 6th and 12th order interpolators (which use one set of ele- 

ments and 5 o r  11 sets of element rates) 

a Lagrange five-point interpolator (which uses five sets of elements) 

0 Hermite three-point interpolator (which uses three sets  of elements 

and three sets of element rates) 

The mean elements and element rates were obtained from the Variation of Param- 

eters (VOP) averaged orbit generator of the Goddard Trajectory Determination 

System (GTDS). When the integrated mean elements and rates obtained from the 

averaged orbit generator a re  used as the grid points, they are referred to as in- 

tegrated mean elements and rates. Alternatively, a high-precision orbit genera- 

t o r  was used to compute osculating elements at the grid points, which were then 

converted to mean elements using the GTDS numerical osculating-to-mean ele- 

ment conversion procedure. The mean rates corresponding to these elements 

were computed using the VOP averaged orbit generator. Such elements and rates 

are referred to as converted mean elements and rates. 

In any representation scheme that depends on grid point values, a tradeoff will 

occur between the accuracy achievable and the number of terms required, which 

is a function of the grid interval. The grid interval was therefore varied in this 

and similar studies reported in this section. 
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direction, while use of single-precision arithmetic degrades the horizontal 

accuracy to a greater  extent than the radial accuracy. Both of these observa- 

tions may be partially understood by examining the relative fluctuations (from 

grid point to grid point) in the equinoctial elements. 

The radial e r r o r  is related to e r r o r s  in the elements a, h, and k (see Equation 

(3-20) for the definition of equinoctial elements in te rms  of classical elements). 

Typical relative fluctuations in  these elements for the EOS orbit a r e  about 2 x 
5 x loe1, and 3 x lom1, respectively. 

tribute to the horizontal e r ror ,  typical relative fluctuations a r e  3 x 

and 1 x lo-', respectively. On the average, the fluctuations a r e  most prominent 

in h and k. This may be responsible for la rger  interpolation e r r o r s  in h and k, 

leading to la rger  radial e r r o r s  when using double-precision arithmetic. When 

using single-precision arithmetic, the truncation has a la rger  effect on those 

elements which are more nearly constant, i. e. ,  q and a (in that order).  This 

may be responsible for the greater  deterioration of the horizontal e r r o r  when 

using single-precision arithmetic. 

For the elements p, q, and L, which con- 

1 x 

The computer on board the MMS will use 18-bit words (see Section 3 . 2 ) .  

Double precision on this computer will be slightly better than single precision 

on the IBM System 360. Thus, at f i r s t  sight it may appear that the interpola- 

tion e r r o r  figures of interest are the errors in  the last two columns of 

Table 2-2. However, it should be possible to achieve an effective precision 

intermediate between single and double precision (on the System 360) by 

proper scaling of the numbers involved. For  example, a constant number, 

corresponding to the average value over all the grid points, could be sub- 

tracted, stored in memory, and then added back after interpolation, thereby 

effectively utilizing core storage space for  the varying part of a number only. 

This should help particularly in the case of the element q and to a lesser  

extent in a, p, and L. A similar advantage is not available for Cartesian or  

quaternion representations, since elements of these representations have a 

zero average value over many grid points. 

2-6 



In view of the above, it may be conjectured that the proper grid spacings for 

two-point, three-point, and four-point Hermite interpolat ion on osculating equi- 

noctial elements of the EOS 700-kilometer orbit are about 6, 8, and 10 minutes, 

respectively, and require 12K, 9K, and 7.2K words of data, respectively. For 

the SMM mission, the grid spacings could be about twice those for the EOS mis- 

sion. The Lagrange interpolator was only briefly evaluated, because of its gen- 

erally larger er ror .  

For the extrapolation of equinoctial elements, a Fourier-power expansion, i. e.,  

a Fourier series with polynomial coefficients, of the form given in Equation (2-2), 

is a possible representation (see Appendix B). A brief evaluation of this series, 

with the inclusion of the 19 terms, boo, bol, 

bZ1, a30, a31, b30, bgl, a40, a41, b409 and bql, showed a root mean 

square (rms) e r r o r  of f i t  of 3.3 x 10’2 kilometers in a ,  r m s  e r r o r s  of fit of 

7.6 x 6.1  x 6.5 x lom6, and 2.6 x in h, k, p, and q ,  respec- 

tively, and an rms e r r o r  of fit of 7.2 x 
kilometer orbit with a 4 x 4 gravity field and solar, lunar, and drag effects over 

a l-day data span using an 8-minute data interval. 

b02’ a l O ’  all’ bll’ a20’ a21’ 

radians in L for the EOS 700- 

An estimate of the closeness of this fit may be derived by an approximate trans- 

formation of the errors in the equinoctial elements to  e r r o r s  in position. The 

along-track position error is roughly the semimajor axis times the angular error 

in the longitude L ,  i. e., approximately 0 . 5  kilometers. The cross-track e r r o r  

is roughly the semimajor axis times the error in i o r  R, both of which can be 

related to  e r r o r s  in p and q .  The e r r o r s  in i and fi are found to be about 

6 x and 2 x loW5, respectively, leading to  a cross-track e r r o r  of about 

100 meters.  The radial e r r o r  can be related to e r r o r s  in a ,  h ,  and k, result- 

ing in an error of about 70 meters. The net rms positional e r r o r  is therefore 

approximately 0.55 kilometers. Additional evaluation of the extrapolation of 

equinoctial elements was not performed in this study; however, T.  Feagin of the 

University of Tennessee has made such an evaluation (Reference S ) ,  and the re- 

sults essentially agree with the results obtained here. 

2-7 



Another possible method for  the extrapolation of osculating equinoctial elements 

would be to  remove the polynomial behavior by representing the mean element 

history by a polynomial as in Section 2.1.1. The difference between the oscu- 

lating and the mean elements could then be represented by a simple Fourier 

series. 

2.2 REPRESENTATIONS USING CARTESIAN COORDINATES 

The accuracy of interpolation and extrapolation on inertial Cartesian coordinates 

is evaluated in Sections 2.2.1 and 2.2.2, respectively. 

2.2.1 Interpolation 

Given the exact, i. e., predicted, Cartesian coordinates at selected grid points, 

approximate values at intermediate points can be obtained by polynomial interpo- 

lation. The following interpolators were evaluated with respect to  an SMM orbit 

and an EOS orbit (see Appendix A for nominal state vectors): 

0 Lagrange five-point 

0 Hermite two-point 

0 Hermite three-point 

0 Hermite four-point 

Equidistant grid points were used in all interpolators. Results are shown in 

Table 2-3. The third column indicates the number of terms, i.e., single words' 

on the NSSC, which would have to be transmitted and stored on board pe r  4-day 

span. The las t  column indicates the maximum root sum square (rss) e r ro r2  over 

any span. (The e r r o r  was not uniform and a search was generally necessary to 

obtain the maximum. ) It is assum-ed that interpolation is always restricted to  a 

~- ~ 

'Nominally, double words are needed to represent the terms,  but a data com- 
pression scheme, discussed in Section 2.2.2, may permit single words to  
represent the terms. 

2At the t ime of this evaluation, software to  estimate the horizontal component 
e r r o r  was not available. However, spot calculations by hand indicate that this 
component is comparable to  the radial e r ro r .  
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span bounded by the two central grid points in the case of the Lagrange five-point 

and the Hermite four-point interpolators and by the extreme grid points in the 

case of the Hermite two-point and three-point interpolators. Points outside such 

spans a r e  dealt with in  the ne.* subsection, where extrapolation accuracy is ex- 

amined. 

It can be seen from the results in Table 2-3 that, in general, higher order inter- 

polators require smaller  smounts of data, i. e. ,  permit la rger  spacing, than low- 

er  order interpolators. A Hermite interpolator permits larger  spacing than a 

Lagrange interpolator of comparable degree. Further, for the same accuracy 

requirement, the higher, relatively drag-free orbit allows larger  grid spacing 

than the lower, drag-perturbed orbit. However, the actual accuracy require- 

ments are quite distinct for the two types of orbits. The desired grid spacing for 

an EOS type mission, with a 700-kilometer altitude orbit and a 10-meter repre- 

sentation accuracy requirement, is about 1 to  2 minutes, 1 to 2 minutes, 6 to 8 

minutes, and 10 to 12 minutes for the Lagrange five-point, Hermite two-point, 

Hermite three-point, and Hermite four-point interpolators, respectively. The 

corresponding figures for an  SMM type mission, assumed to  have a 500-kilometer 

altitude orbit and a 10-kilometer representation accuracy requirement, a r e  ex- 

pected to be about twice the figures for the EOS mission. If the amount of data 

(or core) is the main consideration, a high-order Hermite interpolator would be 

optimal. However, if onboard computational time is the main criterion, then a 

low-order Lagrange o r  a low-order Hermite interpolator appears preferable (see 

Section 3) .  When both core and time aspects a r e  considered together, a low-order 

Hermite interpolator is found to  be preferable to  a low-order Lagrange interpolator, 

since the la t ter  requires more data than the former, while the two require about 

the same computational time (see Section 3). 

2 . 2 . 2  Extrapolation 

To permit extrapolation in the absence of grid point data, a simple semiempiri- 

cal function is desirable which approximates the time behavior of the Cartesian 

2-10 



coordinates. An additional advantage of such a function is that the grid data trans- 

mitted to  the satellite need only consist of differences o r  residuals of the actual 

grid values and the values computed from this extrapolation function. This should 

result in considerable savings in the amount of data transmitted, because the mag- 

nitude of the residual values would hopefully be several orders  smaller  than that 

of the grid Cartesian coordinates themselves.' The additional computation needed 

for evaluating the function and adding the residuals will be negligible, since it will 

only occur once every grid interval (which, as seen in the previous section, is of 

the order  of a few minutes while the basic attitude control cycle interval is likely 

to be only 1/8 to 1/4 of a second). 

It is shown in Appendix B that a possible semiempirical extrapolation function for 

a Cartesian coordinate, i. e., an inertial component of either position o r  velocity, 

over a span of a few days is of the form 

o r  explicitly, 

(2-2) 

which is a Fourier series with polynomial coefficients. Here G) is the fundamental 

mean orbital frequency. Guidelines for the truncation of this series a r e  discussed 

'Specifically, if the position (velocity) component residuals a r e  no larger than 13 
kilometers (13 meters/second) in magnitude, then each t e rm can be represented 
by a single NSSC word (18 bits) to a 0. 1-meter (0. 01-centimeters/second) accu- 
racy. 
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in Appendix B. A semiempirical procedure would thus consist of determining the 

coefficients appearing in this series by a least-squares fit (on the ground) to  the 

predicted orbit. The fitting span may be chosen to be the fifth day, when extrapo- 

lation is likely to  be needed. Over the first 4 days, residuals can be computed 

with respect to  the obtained solution. The data transmitted to the spacecraft would 

consist of the solution (i. e.,  the coefficients) and the residuals over the first 4 

days. 

The preceding procedure would be optimal if (a) the residuals transmitted do not 

exceed the single word limit and (b) there is no danger of loss or distortion of a 

residual in transmission o r  in onboard handling. 

transmitting the actual grid point Cartesian coordinates, rather than residuals, 

would result in a slight saving in onboard computation cost, or  the total span could 

be segmented and a separate solution obtained for each segment. If condition (b) 

is not met, then the least-squares fit should be carried out over the entire 5-day 

span o r  even possibly over the first 4 days alone, and the expansion given in Equa- 

tion (2-2) may have to be carried to more terms. This method is essentially an 

extension of the Block 5D ephemeris storage technique (Reference 6). 

If condition (a) is not met, then 

Results from an evaluation of the extrapolation accuracy of the technique described 

above are shown in Table 2-4. Results from a preliminary evaluation using a re- 

duced force model and/or eccentricity, which was made primarily to  verify the 

analysis of Appendix B, are also included here. The last  four columns indicate 

the root mean square (rms) e r r o r  in the x, y, and z components in the least- 

squares fit to data at a 4-minute grid interval,' and the root sum square (rss) of 

these r m s  er rors .  The maximum e r r o r  was not examined; however, this must 

be examined before a final choice of an extrapolation function i s  made. The max- 

imum e r r o r  over the last day must meet the extrapolation accuracy requirement, 

while the maximum error (residual) over the first 4 days must meet the single 

word requirement. 

'Except run (a)-10, where an 8-minute interval was used. 
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It can be seen from the results shown in Table 2-4 that the approach described 

here is a promising one. The actual terms to be included in the solution must be 

determined by further studies using the actual orbital elements of the mission un- 

de r  consideration; however, the set of 13 coefficients, b 

a12’ b l O ’  bll’ b12’ a30’ bZO’ 30 ’ 
1 iminary results presented here. 

00’ bO1’ b02’ a l O ’  all’ 
and b appears to  be optimal from the pre- 

The rms positional e r r o r  for the EOS orbit, over a 1-day span, is about 0.6 kil- 

ometers when this set of coefficients is used. This corresponds to a relative 

positional e r r o r  of about 8 x Since onboard reference to the Fourier-power 

series is infrequent (i.e., at grid points only) and since the computational cost is 

relatively small  (see Section 3), it should be possible to allow for more te rms  in 

the onboard software than are actually needed in this expansion. If, for a partic- 

ular  mission, certain higher order  te rms  are found unnecessary o r  undesirable 

due to observability problems, a zero value for these coefficients could be trans- 

mitted. Further, if the Fourier-power series itself meets the accuracy require- 

ment of the mission (this could be the case for  the SMM mission in view of entry 

(a)-10 in Table (2-4)), then residuals need not be transmitted and the onboard 

software can be simply modified to  bypass the reading and adding of the residuals. 

This approach would permit standardization of the onboard software. 

2 . 3  REPRESENTATIONS USING ORBITAL QUATERNIONS 

Results of the evaluation of the interpolation and extrapolation accuracy of orbital 

quaternions are presented in Sections 2 .3 .1  and 2 . 3 . 2 ,  respectively. Because 

this representation was motivated by the EOS mission attitude control require- 

ments, the relative interpolation accuracy requirement was presumed to  be 

which corresponds to  about 10 meters  in position (see Appendix A ) .  Certain a u -  

iliary quantities, r, k, and possibly vI, the component of velocity perpendicular 

to  the radius vector, must also be transmitted if position and velocity are to be 

recovered (see Section 3). Interpolation and elrtrapolation on the quantities r 

and vL are also evaluated. 
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2 . 3 . 1  Interpolation 

Estimates of the interpolation accuracy of quaternions for the EOS mission are 

presented in Table 2-5. The horizontal e r r o r  depends on the interpolation e r r o r  

in quaternions, while the radial e r r o r  depends on interpolation on the auxiliary 

quantity r. The la t ter  fluctuates between about 7080 kilometers and about 7115 

kilometers, while a typical quaternion component fluctuates between 0. 75 and 

-0. 75. A s  a result, the horizontal interpolation e r r o r  on the NSSC will be com- 

parable to  the single-precision e r r o r  on the IBM S/360, while the radial e r r o r  

on the NSSC will be between the single- and double-precision e r r o r s  on the IBM 

S/360. It can be deduced from this discussion that the desired grid spacing for 

the EOS mission, when using Hermite two-point, three-point, and four-point in- 

terpolation on quaternions, is about 6 minutes, 10 minutes, and 15 minutes, re- 

spectively, requiring about 10K, GK, and 4K words of data, respectively. The 

accuracy for an SMM orbit was not evaluated, but it may be conjectured that grid 

spacings twice as large as those for the EOS mission can be used. 

2 . 3 . 2  Errtrapolation 

A Fourier-power series expansion of the form 

2 [A,,, + Aut + A,,t + -. . .] sin (%) 
+ [Blo + But + BL(Lt*+*..*] COS[+) 

+ [A& + ~~~i + hZ2t2+ .... ] sin (ut) sin(+) 

2 + [Bzo + B,,t + B,t t -...I sin (ut) COS(%) 

+ . . . . .  

was used for the extrapolation of quaternion components. 

(2-3) 

Justification for this 

form is discussed in Appendix B. The use of products such as sin (ut) sin [ ( d t ) / 2 ]  

instead of harmonics such as sin [(3wt)/2] was for programming convenience only; 

the two forms are equivalent. 

uating the r m s  e r r o r  of fit, the relative e r r o r  with respect to  the maximum 

For r and vL, Equation (2-2) was used. In eval- 
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magnitude of the component is relevant. 

this magnitude is 0. 75, for r the magnitude is about 7100 kilometers, and for 

vL the magnitude is about 7.4 kilometers/second. Table 2-6 shows the results 

of the extrapolation evaluation carried out with respect t o  an EOS (700-kilometer) 

orbit and an SMM orbit (see Appendix A, Table A-1, for nominal elements) using 

a 4 x 4 gravity model and solar, lunar, and drag effects. The data rate used was 

8 minutes as opposed to 4 minutes for Cartesian coordinates (Section 2 . 2 . 2 ) ,  in 

view of the interpolation results (Section 2 . 3 . 1 ) .  The las t  six columns of the 

table show the relative e r r o r s  in the six components. Examination of Table 2-6 

shows that a Fourier-power fit to quaternions requires fewer terms than a fit to  

Cartesian coordinates to the same accuracy (see Section 2 . 2 . 2 ) .  This is  due 

primarily to the absence of nonharmonic terms in the expansion of quaternions 

and is partly due to  the larger grid spacing permissible when using quaternions. 

For a typical quaternion component 

The use of the extrapolation function as a data compression scheme requires that 

residuals over a 4-day span not exceed the NSSC single word size. This requires 

a relative fit of about 

this requirement is likely to be met by the Fourier-power representation. 

o r  better. The third entry in Table 2-6 indicates that 
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SECTION 3 - COMPUTATIONAL COST ASPECTS 

The computational costs of the various onboard algorithms for interpolation 

from ephemeris representations and for conversion of the interpolated quanti- 

t ies to a form suitable for onboard use are examined in this section. Algo- 

rithms for attitude determination and control are not considered. Section 3. l 

gives a summary of the algebraic equations involved. Interpolation and extrapo- 

lation, as well as conversion algorithms, a r e  included. In Section 3 . 2 ,  the com- 

putational time on the NSSC of the various algorithms is estimated. The estimates 

are based only on the arithmetic operations involved; overhead cost is not included. 

Nevertheless, the comparative speeds of the various approaches considered can be 

derived from these estimates. A discussion of the core requirements of the var- 

ious approaches is given in Section 3 . 3 .  

3 . 1  SUMWRY O F  ALGORRHMS 

The algebraic equations involved in the various interpolation and extrapolation 

schemes are summarized in Sections 3 . 1 . 1  and 3 . 1 . 2 ,  respectively. Algorithms 

for conversion between various forms of orbital description a r e  summarized in 

Section 3 . 1 . 3 .  In each case, an attempt is made to write the algorithms so a s  to 

minimize the computational cost. 

3 . 1 . 1  Interpolation Algorithms 

The onboard computations involved in the Lagrange five-point and Hermite two-, 

three-, and four-point interpolators a r e  summarized below. In each case, com- 

putations that a r e  needed at each grid point and at every interpolation interval 

are presented. The critical cost arises from the la t ter  type of computation, since 

grid points are likely to be located several  hundred (or even possibly several  thou- 

sand) interpolation intervals apart.' The algorithms were derived from the defi- 

nitions of Lagrange and Hermite interpolators (see footnote on page 2-1). 

I For an EOS mission. 
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3.1.1.1 Lagrange Five-Point Interpolator 

(a) Grid Computations 

For  each element and each rate, the following computations a r e  re- 

quired: 

E =  e3 

(ei - Be, + ~ e ,  - e5) 
12 D =  

(-el + se,- 30e, t 16e4 - e,) 

(-er + 2e2- 2e4+ e,) 

(e,-4e,+6e,-4e4 + e g )  

24 
C =  

0 =  

A =  

12 

24 

(3-1) 

Here, c stands for any element o r  rate and the subscripts refer to 

the various grid points. The algorithm requires 7n multiplications 

and 14n additions, where n is the number of elements o r  rates.  

Interpolation Computations 

First, the quantity p = [(t - tg)/g] is computed, where g denotes 

the grid interval. Then, for each element or rate, the interpolated 

value is obtained as 

e = E t p (  Dc p[C+p(B+pA)]]  (3-2) 

This computation requires (4n + 1) multiplications and (4n + 1) addi- 

tions, where n is the number of elements o r  rates. 
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3.1.1.2 Hermite Two-Point Interpolator 

(a) Grid Computations 

For each element-rate pair, the following equations are required: 

D = el 

c = gi, 
(3-3) 

The required operations are 3.2n multiplications1 and 6n additions, 

where n is the number of element-rate pairs. 

(b) Interpolat ion Computations 

First, p = [(t - t l) /g] is computed. Then, for each element-rate 

pair, the following expressions are evaluated: 

(3-4) 

The required operations a r e  (3j + 4. Ik + 1) multiplications and 

(3j + 2k + 1) additions, where j and k a r e  the number of interpo- 

lated elements and rates, respectively. (A savings of 2. Ik multipli- 

cations is possible if C/g,  2B/g, and 3A/g are stored in memory.) 

A multiplication o r  division by a power of 2 is counted as 0 .1  multiplication. 
1 
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3.1.1.3 Hermite Three-Point Interpolator 

(a) Grid Computations 

For each element-rate pair, the following computations are per- 

formed: 

g 1 C p  t, + ai,) 
4 (3-5) 

3 (e, - e,) + 9 + d e ,  + e31 
4 

A 5  

The required operations are 2. 7n multiplications and 17n additions, 

where n is the number of element-rate pairs. 

(b) Interpolation Computations 

First, the quantity p = [(t - t2) /g]  is computed. Then, for each 

element-rate pair, the following computations a r e  performed: 

The interpolation operations involve (5j + 7. 2k +1) multiplications 

and (5j + 4k + 1) additions, where j and k a r e  the number of ele- 

ments and rates  interpolated, respectively. 

tiplications is possible if E/g, 2D/g, 3C/g, 4B/g, and 5A/g a r e  

stored in memory.) 

(A saving of 3. 2k mul- 

3 -4 



3.1.1.4 Hermite Four-Point Interpolator 

(a) Grid Computations 

For each element-rate pair, the following computations a re  re- 

quired: 

where A and B a re  the 4 x 6 matrices 

A =  

B =  

- 124 
108 

1 
4 

1 

- 11 
106 

- 
- 

- 

(3-7) 

(3-8a) 

(3-8b) 

When written out explicitly, these equations involve 32n multiplica- 

tions and 41n additions, where n is the number of element-rate 

pairs. 



(b) Jnterpolation Computations 

First, the quantity p = [(t - t2)/g] is computed. Then, for each 

element-rate pair, the following expressions a r e  evaluated: 

This algorithm requires (7j  + 10 .2k  + 1) multiplications and (7j + 5k + 1) 

additions, where j and k a r e  the number of interpolated elements and 

rates, respectively. (A savings of 5 .2k  multiplications is possible if 

2Y1/g, 3Y2/g, 4Y3/g, 5Y4/g, 6Y5/g, and 7Y6/g a r e  stored in memory.) 

3 . 1 . 2  EXTRAPOLATION ALGORITHMS 

A Fourier-power ser ies  has been suggested (see Section 2)  as  an extrapolation 

function for Cartesian coordinates, orbital quaternions, o r  equinoctial elements. 

This series need only be evaluated at grid points, and therefore its computational 

cost is not very critical. Nevertheless, for completeness, it is evaluated here. 

From a computational point of view, it is advantageous to write such a ser ies  a s  

(3-10) 
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where e is any element or rate. 

This form is obtained by making use of the fact that trigonometric functions of 

multiple angles are simple polynomials in the functions of the fundamental angle. 

For quaternions, the t e rms  Bo will be absent in the series, and the trigono- 

metr ic  functions will be sine and cosine of [(cJt)/21 multiplied by various powers 

of sin (ut). 

j 

This computation requires 2 sines/cosines, [ (2N + l)Mn + 2Nn + 2N - 21 multi- 

plications, and [(2N + 1)Mn + 2Nn] additions, where N and M are the highest 

harmonic and the highest power of t ,  respectively, and n is the number of ele- 

ments/rates o r  position/velocity components. 

A s  a concrete example, i f  N = 4, M = 3, and n = 1, then 2 sines/cosines, 41 mul- 

tiplications, and 35 additions are involved. In another example, i f  n = 6 and 

N and M are the same as in the first example (i. e., N = 4 and &I = 3), then 2 

sines/cosines, 216 multiplications, and 210 additions are required. The t imes 

needed on the NSSC for thesc two cases are approximately 14 and 59 milliseconds, 

respectively (see Table 3-1, page 3-20). 

3.1.3 CONVERSION ALGORITHMS 

The attitude control law is expected to  be formulated in terms of target quater- 

nions (References 4 and 9)  (or possibly direction cosines) and target angular vel- 

ocities about the body axes, i. e., body rates (Reference 10, Equation (4-5)). A 

pointing maneuver, on the other hand, may require the position and velocity vec- 

tors,  since a relative vector between two objects is involved. Thus, conversion 

algorithms among various forms of orbital description may be required. 

Described in this subsection are the algorithms for the following conversions: 

(1) conversion from Cartesian coordinates to direction cosines, quaternions, and 

body rates; (2) conversion from quaternions to Cartesian coordinates and direction 

cosines; and (3) conversion from equinoctial elements to quaternions, direction 

cosines, body rates, and Cartesian coordinates. It is assumed that orbital 

3- 7 



information is uplinked from the ground. Compatibility with the GPS is discussed 

in Appendix C. 

3.1.3.1 Computation of Direction Cosines, Quaternions, and Body Rates From 
Cartesian Coordinates 

3.1.3.1.1 Direction Cosines 

The target inertial attitude of an Earth-pointing satellite can be described by a 

3 x 3 direction cosine matrix A = (a..) . The rows of matrix A are simply the 

inertial components of the target xT, yT, zT axes. The convention is followed 

that the target xT-axis points away from the center of the Earth towards the sat- 

11 

ellite,' the zT-axis points towards the instantaneous orbit normal, and the yT- 

axis completes a right-handed system, so that it is approximately along the sat- 

ellite velocity vector. The A matrix is given by the following algorithm. 

The inverse of the magnitude of the position vector is computed as 

63 
256 ro 

where r2 = (x2 + y2 + z2), A = (ro -2 )(r 2 ) 5 2e, and [ - -'] and ri2 are 

stored numbers (ro, which may be chosen to  be the mean semimajor &xis, is the 

approximate value of r). For drag-perturbed orbits, a simple polynomial repre- 

sentation for ril may be necessary so that ril will be updated no more than 

once every grid point, thus adding negligible cost. The above approximation for 

the square root results in a 50 to  75 percent saving in time over conventional 

algorithms. The level of truncation shown here will leave relative e r r o r s  below 

2 x 

on the NSSC. 

for an eccentricity below 0.01; this corresponds to double precision 

'It is assumed in the text that the satellite is to  point towards the Earth 's  center. 
The case where it must point towards the subpoint, which is defined to be along 
a normal to  the ellipsoidal Earth figure, is discussed in Appendix D. 
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4 

The orbital angular momentum vector, G ,  is then computed a s  follows: 

where x, y, z, k, $, and 

position and velocity. 

a r e  the inertial Cartesian coordinates of the satellite 

Next, the magnitude squared, G 2 ,  and the inverse magnitude, G- l ,  a r e  deter- 

mined, where G'l can be found by an algorithm similar to that for r-l. For a 

drag-free satellite, G'l may be assumed to be constant. 

The elements of the direction cosine matrix A are computed as follows: 

4,, = x r - l  ; 

= Gx G ; 

a,, = y r" i 

u , ~ ~  = Gr G-'; 

aL3 = tr-' 

a3j = G& G-' -1 

(3-13) 

The above computations require 36 multiplications and 24 additions. 

3.1.3.1.2 Quaternions 

The orbital quaternions, denoted here by TI (ql, q2, q3, q4) , can be obtained 

from the direction cosines by a standard conversion algorithm (Reference 11) 

%= p/4 (3-14) 
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If Q is less than some preselected tolerance E , a different combination of the 

diagonal elements is selected, and the subsequent equations are changed accord- 

ingly. Subroutine CEULER of the Attitude Data Generation (ADGEN) System may 

be referred to for a complete algorithm. 

The required operations are 1 square root, 4 . 2  multiplications, and 6 additions 

for this algorithm plus 24 additions for the computation of matrix A. 

An alternative algorithm which proceeds via equinoctial elements (Reference 5), 

ra ther  than via direction cosines, is as follows. 

G2, and G'l are computed as in Section 3.1.3.1. 1, which calls for 22 multipli- 

cations and 17 additions. Next, the unit vector G, along the angular momentum 

and equivalent to the w vector in Reference 5, is computed as 

A 

First, the quantities r2, fl, G, 

A 

A 

- f  A -1 A -1 5 x = G,G j Gy = Gy C ; Gir = GgG (3-15) 

A 
The vector G is also equivalent to  the third row of matrix A. 

The remaining computation steps of the algorithm are as follows. The quantity 

Go is calculated from 

- t l 2  
Go = C L + ~ , )  

via an expansion s imilar  to that used for r-l in 
A 

is valid since G, = cos i ,  which is approximately constant and not equal to  -1. 

The following quantities are then computed as 

(3-16) 

Equation (3-11). This procedure 

2 
Goo = Go 

(3-17) 
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The expressions for the quaternions in Equations (3-17) are equivalent to the fol- 

lowing basic expressions in t e rms  of the equinoctial elements p, q, and L: 

(3-18) 

which can be derived from the basic definition of the quaternions in  t e rms  of the 

classical elements (i.e., n = longitude of the node, (3 = argument of perigee, 

f = t rue anomaly, and i = inclination) (Reference 11, Equation (4-4)) given below: 

(3-19) 
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In this derivation, the following definitions of the equinoctial elements (Refer- 

ence 5) are used: 

a =  a 
h = e sin (dtn) 
k = e co~(c>+SI.) 

p = tan(il2) sinn 
3 = t a n ( i I 2 )  cosR 

L = c>+n+* 

(3-20) 

where a is the semimajor axis and e is the eccentricity. These elements are 

nonsingular for all except highly retrograde orbits, i. e., orbits with inclinations 

near  180 degrees. 

This method of computation of quaternions requires 1 square root, 47 multipli- 

cations, and 3 1  additions, compared with the 1 square root, 40 multiplications, 

and 30 additions required by the first method, which proceeds via the direction 

cosine matrix A. 

3 . 1 . 3 . 1 . 3  Computation of Body Rates (In Conjunction With Either Direction 
Cosines o r  Quaternions) 

The body rates are given in terms of the classical elements (Reference 10, Equa- 

tion (4-5)) as 

By manipulation, the above expressions can be reduced to 

(3-21) 

(3-22) 
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A h A 
where Gx = a31, G = a32, and GZ = a33. The preceding results can also be 

obtained by noting that ~3, must equal the orbital angular momentum, G ,  divided 

by r2, and that the effect of perturbations is to produce a torque r (r. G) along 

the orbital y-axis, which should result in a precession of the orbit plane about the 

x-axis at a rate ux = (torque)/(angular momentum) = r r G/G . 

Y 

.A h 

L A  

Computation of the body rates  requires 8 multiplications and 2 additions. 

3.1.3.2 Computations of Direction Cosines, Body Rates, and Cartesian 
Coordinates From Quaternions 

The algorithms for conversion from quaternions to direction cosines, body rates, 

and Cartesian coordinates are described in  this subsection. 

Cartesian coordinates requires certain additional quantities apart from quater- 

nions, as is shown below. 

Conversion to 

3.1.3.2.1 Conversion to  Direction Cosines From Quaternions 

The following equations (see Reference 10, 

from quaternions to  direction cosines: 

- 2 2 
= e, - s, 

Equation (4-15)) are used to  convert 

4: + (/: 

(3-23) 

The operations required a r e  10.6 multiplications and 15 additions. 
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3 . 1 . 3 . 2 . 2  Conversion to Body Rates From Quaternions 

Assuming that quaternion rates are available, the following equations (see Ref- 

erence 10, Equation (4-16)) can be used to  convert from quaternions to body 

rates: 

(3-24) 

The operations required are 8 . 2  multiplications and 6 additions. 

3 . 1 . 3 . 2 . 3  Conversion to  Cartesian Coordinates From Quaternions 

In order  to convert from quaternions to Cartesian coordinates, it  is necessary to 

have available three additional independent quantities which can be chosen to be 

r, >, and vL (where vL is defined to  be the component of velocity perpendicular 

to the radius vector and is given in  terms of classical elements by vL= d p m / r ,  
where ,u = the gravitational constant). 

First, the first six direction cosines must be found using the first  six of the nine 

equations given by Equation (3-23). Then 

give the inertial position and velocity components. This involves 1 9 . 4  multipli- 

cations and 13 additions (including the computation of the six direction cosines). 

The above equations are needed when only quaternions (but not their rates) are 

available, i. e., if  a Lagrange interpolator is used. If a Hermite interpolator is 

This is true only for geocentric rates; for geodetic rates, the equation must be 
evaluated (see Appendix D). 

* 
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used, quaternion rates 

can be dispensed with, as follows: 

will also be available. In this case, the need for vL 

(3-26) 

Here, four rates, as opposed to  one vL, must be obtained by interpolation, but 

these rates are also needed in the computation of 3. These operations require 

2 1 . 5  multiplications and 12 additions. 

Savings (overlap) occur when A, 3, ?, and 4 are found together: six direction 

cosines need not be found twice, saving 1 0 . 4  multiplications and 10 additions. 

With the second method for finding $, the overlap is 12 .2  multiplications and 

5 additions ( 8 . 2  multiplications and 5 additions if  3 is not found). 

3 . 1 . 3 . 3  Computation of Quaternions, Body Rates, Direction Cosines, and 
Cartesian Coordinates From Equinoctial Elements 

Algorithms for  conversion from equinoctial elements to  quaternions, body rates, 

direction cosines, and Cartesian coordinates are described in this subsection. 

3 . 1 . 3 . 3 .  1 Conversion to Quaternions From Equinoctial Elements 

The equinoctial elements are defined in terms of classical elements as in Equa- 

tion (3-20). The expressions for the quaternions given in Equation (3-18) lead 

to  the following algorithms: 
L' = L/2  
5 = sin L' 
c = cos L' 

(3-27) 

3-15 



The quantity A' is evaluated by an expansion similar to  that given for r-l in 

Equation (3-11); this expansion is valid since A' = cos ( i / 2 )  . The preceding com- 

putations require 2 sines/cosines, 13.1 multiplications, and 9 additions. 

3 . 1 . 3 . 3 . 2  Conversion to Body Rates (In Conjunction With Quaternions) From 
Equinoctial Elements 

Assuming that fi, 6, and L are available, the following computations will give 

the body rates: 

s' = 2sc j 

uq = A " (  6s' + 4 ~ ' )  
C' = 2 C ' -  F j A" = 2 (A')' 

= A"(Cjc' - 4 s ' )  E O* 
L3Y 

~3, = i + A " ( p i -  gp) 

(3-28) 

The operations required are 9 . 3  multiplications and 4 additions when computed 

in conjunction with the quaternions. 

3.1.3.3.3 Conversion to Direction Cosines From Equinoctial Elements 

The following equations are used to convert from equinoctial elements to direction 

cosines: 
S' = sin L 

c" COSL 

(3-29) 

Here, B is the nominal value of B = (1 + p2 + q2)-l and is stored in the com- 

puter memory. 

in the inclination. 

0 
It may be periodically updated to  account for any secular change 

This is valid for geocentric control only; the geodetic case is discussed in Ap- 
pendix D. 

* 
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The components of the A matrix are computed as follows: 

(3-30) 

Operations required are 2 sines/cosines, 1 8 . 2  multiplications, and 14 additions. 

3 . 1 . 3 . 3 . 4  Conversion to Body Rates (In Conjunction With Direction Cosines) 
From Equinoctial Elements 

The following equations are used to convert from equinoctial elements to  body 

rates (in conjunction with the direction cosines): 

W, = 2 8 ( p s '  + 4c') 

wJ = ze(r;c'- 4s') 3 o* (3-31) 

a, = i + 2 0 ( p i -  

This requires 6 . 2  multiplications and 3 additions when computed in conjunction 

with direction cosines. 

3 . 1 . 3 . 3 . 5  Conversion to  Cartesian Coordinates From Equinoctial Elements 

The following algorithm is used to convert from equinoctial elements to  Cartesian 

coordinates : 

C = a ( l - h Z - k Z )  

0 = CEOZ-1 (3-32) 

~~ * This is valid for geocentric control only; the geodetic case is discussed in Ap- 
pendix D. 
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I 1s 
where E I 4- = d m  and E, = 

are stored nominial values. ) The expansion above ignores only te rms  of the 

order  J i  x 

E, . (€,and E; 

3 -9 while including terms of the order  J2 FZ 10 . 
The remaining steps of the algorithm to convert from equinoctial elements to  

Cartesian coordinates follow: 

(3-33) 

The operations required are 2 sines/cosines, 41 .3  multiplications, and 31 addi- 

tions. Savings (overlap) occur when q, 3, r, r, o r  A, 3, r, r are found to- 

gether. In these cases, s', c', and B need not be recomputed, which saves 2 

sines/cosines, 8 multiplications, and 8 additions. 

a r e  2 sines/cosines, 5 multiplications, and 5 additions. ) 

d f r  42 

(If 3 is not found, the savings 
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3 . 2  COMPUTATIONAL TIME ESTIMATES 

The onboard computational time needed for interpolation and for conversion of the 

orbital information to  a form suitable for use in attitude control and pointing man- 

euvers is estimated in this section for a variety of ephemeris representations. 

The estimates reflect only the arithmetic operations as listed in the previous sub- 

sections; overhead was not included. The characteristics of the onboard processor 

which are assumed for these estimates are shown in Table 3-1. (The numbers 

given in this table are nearly the same as, though not identical to, those in Ref- 

erence 4. ) 

Due to the 18-bit word length, which permits only about a 

it is assumed that all operations will be performed in double precision. This 

yields a relative accuracy of 10-l' to This is considerably above that 

required, which is about for intermediate computations and for the 

final results, such as control corrections. Advantage should be taken of this 

intermediate precision requirement wherever possible (e. g. , in expanding roots). 

This was already done to some extent in writing the algorithms in Section 3.1. 

relative accuracy, 

The relevant t ime estimates are shown in Table 3-2. The numbers listed repre- 

sent interpolation cycle t imes in milliseconds. Computations at grid points are 

not included here because they are infrequent. (These could amount to about 50 

to  150 milliseconds per  grid interval.) 

It is seen from Table 3-2 that if quaternions o r  direction cosines and body rates 

are the only quantities required in the attitude control law, it is most efficient to 

represent the orbit in quaternions, with equinoctial elements offering nearly as 

efficient a representation and Cartesian coordinates being considerably slower. 

Conversions to position-velocity for pointing maneuvers are infrequent and there- 

fore should not be a critical factor. (If they were, the Cartesian coordinates 

would be more suitable.) If, on the other hand, the attitude control law itself 

requires position and velocity, then Cartesian coordinates are competitive with 

'This could be the case i f  geodetic, rather than geocentric, stabilization is de- 
sired (Appendix D). 
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Table 3-1. Characteristics of the Onboard Processor (NSSC) 

1 .  

2 .  

3. 

4 .  

5 .  

6 .  

7 .  

8. 

9. 

10. 

11.  

12. 

13.  

14. 

15 .  

16.  

17. 

18. 

WORD LENGTH -- 18 Bits 

INSTRUCTION WORD -- 18 Bits 

DATA FLOW -- Parallel 

DATA TYPE -- Fixed Point, Fraction, 2's  Complement 

NUMBER O F  INSTRUCTIONS -- 5 5  

CLOCK RATE/CYCLE TIME -- 800 kHz/l .  25ps* 

OPERATIONS PER SECOND -- 200K 

NUMBER O F  INDEX REGISTERS -- 1 

ACCUMULATOR -- Double Length 

INTERRUPTS -- 16 Multilevel 

DIRECT MEMORY ACCESS (DMA) -- 16 Devices/channel 

MAXIMUM 1/0 RATE -- 66K Words/second 

COMMAND LOAD AND DUMP -- 300K Words/second 

MEMORY CAPABILITY -- 4K Word Modules to 64K Words 

DIRECT ADDRESSING -- 4 K  Words/Page 

TECHNOLOGY -- TTL/LSI 

SIZE/WEIGHT -- (112 cubic inches)/(3 pounds) 

OPERATION TIMES: 
Operation Single Precision Double Precision 

Add/Subtract 20 ps 65 ps 

Mu1 tiply' 42 pus 210 ps 

Divide? 68 p S  3 ms* 

Sine/Cosine . 3 5  ms 1 . 5  ms 

Square Root/ .66  ms 
Inverse Square Root 

3-6 ms 
(Nominal 5 m s )  

* ps = microsecond; ms  = millisecond 
?An exception is the case of multiplication o r  division by powers of 2; in this 

case, a single-precision operation will take 4 . 2  ps and a double-precision 
operation will take 21 ps. 
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both quaternions and equinoctial elements (see the last four columns in Table 3-2). 

In any event, the final choice among the various forms will be governed addition- 

ally by the data transmission requirement. 

3 . 3 .  

This aspect is discussed in Section 

3 . 3  DISCUSSION O F  CORE REQUIREMENTS 

The current design for the onboard processor does not include any peripheral 

storage devices. Hence, any data transmitted from the ground will be stored in 

the main memory and must be included in the onboard core storage cost. 

core requirements of various representations are roughly estimated below. Core 

required for the coding of instructions is not estimated, but this should be negli- 

gible compared with the data storage requirements, except when mean elements 

are used where the data requirement is also negligible. 

The 

The number of words required for a 4-day span will approximately equal the num- 

b e r  of words p e r  grid point multiplied by 6K and divided by the grid spacing in 

minutes. The number of words per  grid point is 10, 9, and 12  for the quaternion, 

Cartesian, and equinoctial representations, respectively. It is  assumed that 

each te rm is a single-precision word representing a residual from an extrapola- 

tion function (see Section 2 .2 .2 ) .  

tion 2, the core est imates  shown in Table 3-3 for the EOS and S3IRI type missions 

can be derived. It is assumed here  that position, velocity, and body rates, as 

well as direction cosines (or quaternions), are required on board. If position and 

velocity are not needed, a core saving of 0 percent, 20 percent, and 50 percent 

is achieved in the case of Cartesian, quaternion, and equinoctial representations, 

respectively . 

Based on the results of the evaluation in Sec- 

Based on the preliminary results obtained, the quaternion representation is opti- 

mal for the EOS mission from the point of view of core requirement and t ime 

requirement (as discussed in the previous section). The grid spacings shown in 

Table 3-3 were estimated in Section 2, taking into account scaling information. 

Additional study of scaling and of residual magnitude optimization will be required 
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Table 3-3. Approximate Core Estimates 

Orbit 
Type' 

EOS 

SMM 

Accuracy 

1 O-me te r 
(horizontal) 

10-kilometer 
(total) 

Repre sentat ion 

Quaternion 

Cartesian 

Equinoctial 

~~ ~ 

Quaternion 

Cartesian 

Equinoctial 

Hermite 
Interpolation 

Type 
~~~~~ - 

2-point 

3 -point 

4-point 

2-point 

3-point 

4-point 

2-point 

3 -point 

4-point 

2-point 

3 -point 

4-point 

2 -point 

3-point 

4-point 

2-point 

3 -point 

4-point 

Spacing 
(min) 

6 

10 

15 

2 

6 

12 

6 

8 

10 

1 2  

20 

30 

4 

1 2  

24 

1440 

1440 

1440 

Words/ 
4 Days 

10K 

6K 

4K 

2 7K 

9K 

4.5K 

12K 

9K 

7 . 2 K  

5 K b  

3Kb 

2Kb 

13. 5Kb 

4. SKb 

2.3K 

12OC 

12OC 

12OC 

a See Appendix A, Table A-1, for the nominal orbital elements. 

twice the corresponding spacing for the EOS mission. These figures can be 
reduced to 1K words o r  less i f  residuals are not transmitted at all. 

Mean elements can be used in this case (see Section 2. 1. 1). 

I bThis is a rough estimate, based on the assumption that grid spacing will be 
i 

C 
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before a more exact comparison can be made of the core requirements of the 

three representations. 

For  the SMM mission, the mean element representation is clearly optima1.l If 

uniformity of software among different MMS missions is desired, then an equi- 

noctial element representation could be used in which short-periodic variations 

(i. e., osculating-minus-mean elements) could be added on for the EOS mission. 

If optimization of the EOS mission is an important additional factor, a quaternion 

representation may be preferable. The extra cost to the SMM mission will then 

be the time cost of evaluating a Fourier-power series at grid points, which may 

turn out to be negligible compared with the overall available t ime budget and the 

core cost of storing harmonic coefficients and residuals. The coefficients should 

require 1K or  fewer words, while the residuals may require an additional 3K to 

5K words. However, if the residuals are not used at all, the net core  require- 

ment would be only that of the harmonic coefficients, i. e., 1K words o r  less. 

This possibility arises since the Fourier-power series fits the SMM ephemerides 

to  approximately a 15-kilometer accuracy, and further tuning of the series could 

possibly reduce this e r r o r  to  less than 10 kilometers. In this case, the question 

of whether to perform a direct series evaluation o r  to use grid point series eval- 

uation and Hermite interpolation remains open; the answer will depend on the 

des ired frequency of orbital computation. 

, 
I 'However, when the stringent requirement mentioned in footnote 1 on page 1-3 

is considered, a Cartesian representation is found to be optimal for the SMM 
miss  ion. 
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SECTION 4 - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

A summary of activities, a summary of results, preliminary conclusions, and 

recommendations for additional investigation are presented in Sections 4.1, 4.2, 

4.3, and 4.4, respectively. 

4.1 SUMMARY OF ACTIVITIES 

Evaluation of the accuracy and onboard computational cost of several  ephemeris 

representations for  the Multimission Modular Spacecraft (MMS) was carried out. 

Fourier-power and Hermite polynomial representations in  Cartesian coordinates, 

equinoctial elements, and orbital quaternions were examined. Mission constraints 

of an Earth Observation Satellite (EOS) mission, which are the most stringent a- 

mong all the MMS missions, were used as the primary evaluation guideline. How- 

ever, applicability of the ephemeris techniques to other MMS missions, such as 

the Solar Maximum Mission (SMM), was also examined. Related aspects, such 

as geodetic control requirements and compatibility with navigation using the Global 

Positioning System, were also examined briefly. 

4.2 SUMMARY OF RESULTS 

The following results were derived from this evaluation: 

0 Although a Fourier-power series is a reasonable representation of 

either Cartesian, quaternion, o r  equinoctial element histories over 

the span of interest (4-5 days), the accuracy of this representation 

is not adequate to meet the EOS mission requirement and is barely 

adequate for the SMM mission. Nevertheless, this may be a useful 

representation for extrapolation purposes, as well as a means of data 

compression when used in conjunction with polynomial interpolation 

between closely-spaced grid points. Specifically, a 1-day extrapola- 

tion accuracy of about 0.5 kilometers (root mean square (rms))  was 

achieved for the EOS mission. Further reduction in this e r r o r  may 
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be possible by the inclusion of more terms in the Fourier-power ex- 

pansion than those used in this study. The data compression is a- 

chieved by transmitting residuals from the Fourier-power series 

(and coefficients describing the series) instead of actual grid point 

element values. Indications are that single words on the NASA Stand- 

a rd  Spacecraft Computer (NSSC) would suffice to  describe the resid- 

uals, while double words would be necessary to describe the original 

elements in order  to  maintain the desired accuracy of representation. 

a A Hermite interpolator that uses exact elements and their  rates at 

closely-spaced grid points is capable of achieving the desired repre- 

sentation accuracy. Specifically, the allowable grid spacing for a 

3-point Hermite interpolator is around 8 minutes (slightly smaller  

for Cartesian coordinates and slightly la rger  for quaternions) for 

meeting the EOS accuracy requirement. The amount of data required 

to  be transmitted and stored on board for a 3-day upload is around 6K 

words (somewhat smaller  for quaternions and somewhat la rger  for  

Cartesian ,coordinates and equinoctial elements). The word require- 

ment for the SMM mission is estimated to be about half the above, and 

is possibly below 1K words if  the Fourier-power series can be tuned 

so as not to require residuals at a1l.l For the SM3I mission, in fact, 

polynomial interpolation on mean equinoctial elements is optimal, as 

this meets the accuracy requirement and uses only 120 words of data.l 

0 The computational time cost of the Fourier-power series is fairly 

large when judged in relation to the attitude control cycle. 

a second reason for excluding the use  of such a series in the attitude 

control cycle.) However, i f  used at  grid points only, the total time 

contribution of the computation of this series is negligible. The on- 

board time cost of Hermite interpolation and conversion to quantities 

(This is 

'However, see footnote 1 on page 1-3. 
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needed for the attitude control function is less for quaternion and 

equinoctial representations (15 to 20 mi1liseconds)l than for a 

Cartesian representation (about 30 milliseconds). Of course, the 

relative costs are reversed if  Cartesian position and velocity are 

required (e. g., for scientific data annotation). In this case, the 

cost is about 10 milliseconds for a Cartesian representation and 

about 20 to 25 milliseconds when using either of the other two repre- 

sentations. 

are desired together (at the same frequency), then a quaternion 

representation is about 10 milliseconds faster than either of the 

other two representations. 

A quaternion representation is approximately three to four t imes 

faster than either Cartesian coordinates o r  equinoctial representa- 

tion if geodetic control is desired. 

If quaternions, body rates, and position and velocity 

e 

4 . 3  CONCLUSIONS 

In view of the results cited above, the following may be concluded: 

e From the point of view of optimizing the onboard operations of the 

EOS mission, the preferred ephemeris algorithm uses a quaternion 

representation in the form of a Fourier-power series and uses re- 

siduals at grid points spaced a few minutes apart  (with low-order 

Hermitian interpolation between the grid points). 

Use  of quaternion representation for the EOS mission not only opti- 

mizes the onboard computational t ime and core storage needs, but 

is also the best representation for describing geodetic control. In 

addition, it can be made compatible with navigation algorithms that 

use the GPS signals as input. 

0 

'The numbers quoted here  and in the rest of this section assume the use of a 
t hree-point He rm ite interpolator. 
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0 Uniformity of software among different MMS missions is achievable 

by the use of the quaternion representation. However, optimality is 

not necessarily achieved thereby with respect to  other MMS missions, 

such as the SMM, particularly if  residuals cannot be dispensed with. 

To achieve near-uniformity and near-optimality with respect to  all 

missions, an equinoctial element representation is ideal, because 

mean elements and a large grid spacing (-1 day) could be used for 

an SMM type mission,' and osculating elements and a relatively small  

grid spacing (- few minutes) could be used for an EOS type mission. 

Of course, if uniformity of software is not a requirement, then qua- 

ternions could be used for EOS, and mean equinoctial elements 

could be used for SMM. 

2 

4.4 RECOMMENDATIONS 

Areas for additional investigation of ephemeris storage techniques for the MMS 

are as follows: 

0 Since only a limited investigation of the Fourier-power series repre- 

sentation was possible in the time frame of the present study, an ad- 

ditional evaluation, using more t e rms  in the series, is desirable so 

as to minimize the e.xtrapolation e r r o r  and to  validate the assumption 

that single-precision NSSC words will suffice for describing the re- 

siduals. 

and polynomial terms may be worthwhile. 

to  investigate methods of reducing the number of coefficients to be 

determined, without sacrificing accuracy of f i t .  This may be possible 

by making the series more analytical. For example, using the meth- 

ods outlined in Appendix B, explicit time behavior arising via the J2  

Further study of the relative importance of the harmonic 

It would also be desirable 

'However, see footnote 1 on page 1-3. 

2Cartesian coordinates could also be used (in view of footnote 1 on page 1-3). 
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secular variations in  R, d, etc., may be modeled directly using the 

analytical orbit propagation theory of Brouwer-Lyddane. Then, only 

the small departures from this theory need be modeled via polynomial 

and higher harmonic terms. A further reduction in the number of 

coefficients may be possible by using independent estimates of the secu- 

lar rates (such as A), derived from a Keplerian Variation of Param- 

e te rs  (VOP) orbit generator. 

0 For the extrapolation of equinoctial elements, a pure Fourier series 

analysis of osculating minus mean elements would be worth investi- 

gating. Again, analytical computation of J2 short-period oscillations 

should be investigated, so as to  minimize the number of empirically 

determined coefficients. Another candidate representation for oscu- 

lating minus mean behavior is a spline fit within one orbital period, 

with a varying scale to account for the secularly decaying orbital 

period. 

0 Considerable effort remains to be expended in optimizing the selected 

software for actual onboard use. Proper scaling of the quantities in- 

volved and other techniques for maximizing the accuracy of the NSSC 

arithmetic need to be investigated. Candidate ephemeris represen- 

tations should be reevaluated after effecting such optimization, and 

in the framework of NSSC precision. 

0 Investigation should be continued of onboard orbit determination algo- 

rithms using the Global Positioning System (GPS) and of their com- 

patibility with the onboard ephemeris storage software adopted. 
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APPENDIX A - ORBITAL ACCURACY REQUIREMENTS 
FOR SOME MIMS MISSIONS 

Most of the initial MMS missions will fall into three basic categories: (1) low- 

altitude Earth-pointing missions, typified by the Sun-synchronous Earth Obser- 

vation Satellite (EOS) orbit, with mean altitudes in the range of 700 to  900 kilo- 

meters,  inclinations of about 99 degrees, and eccentricities of approximately 

0.002; (2) star- o r  Sun-pointing missions, typified by the Solar Maximum Mis- 

sion (SMM) and the Gamma Ray Explorer (GRE) orbits, with mean altitudes of 

about 450 to  550 kilometers, inclinations of about 30 degrees, and eccentricities 

of about 0.02;  and (3) geosynchronous Earth-pointing missions, typified by the 

Synchronous Earth Observatory Satellite (SEOS) orbit. 

The prime motivation for imposing an ephemeris accuracy requirement on the 

EOS mission is to obtain a desired geographic registration accuracy and stabil- 

ity of the Earth pictures taken by the payload sensors. Any uncertainty in the 

knowledge of the ephemeris contributes in two distinct ways to  the picture regi- 

stration uncertainty: 

0 Direct contribution to  uncertainty in the location of the payload sen- 

s o r  

0 Indirect contribution due to uncertainty in the pointing direction of 

the payload sensor arising from the fact that the ephemeris informa- 

tion is used in the attitude control system. 

these two contributions. 

Figure A - l  illustrates 

The direct contribution is given by the horizontal component of the spacecraft 

ephemeris uncertainty (i. e., by the projection of the e r r o r  ellipsoid in the along- 

track/cross-track plane), reduced by the ratio of the Earth 's  radius to the space- 

craft semimajor axis, a factor of about 0.9 (this contribution is arc AC in the 

figure). 
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EOS SPACECRAFT 

ASSUMED POSITION E t  ACTUAL POSITION 

POINTING DIRECTION BASED ON \ I ' ASSUMED PICTURE CENTER LOCATION 
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6400 km 
700 km 

7100 km 
POINTING ERROR 

Figure A-1. Geometry of Earth Picture Registration Uncertainty 
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The indirect contribution, produced by uncertainty in the target direction, is 

given by the product of the altitude and the uncertainty in the pointing direction. 

Assuming for simplicity a spherical Earth and an Earth-center-pointing attitude 

control law, the pointing uncertainty due to the ephemeris uncertainty is the ratio 

of the horizontal ephemeris uncertainty and the spacecraft semimajor axis (i. e., 

in Figure A-1, A = DE/EF). Thus, this contribution to the picture registration 

uncertainty equals the horizontal ephemeris uncertainty scaled down by the ratio 

of the spacecraft altitude to the semimajor axis, which is roughly a factor of 0.1. 

(This contribution is CB in the figure and equals DB multiplied by A, o r  approx- 

imately 0 . 1  ED. ) 

If the same ephemerides are used during picture registration as in the attitude 

control, the net contribution to the picture registration uncertainty is the sum 

(not a root-sum-square) of the two contributions, i. e., it is given by an ellipse 

of the same size as the horizontal ephemeris uncertainty. 

is shown as AB in Figure A-1, and it nearly equals ED. ) 

(The net contribution 

In principle, in the absence of operational constraints, unless the ephemeris is 

determined on board using GPS input (for example), it is not essential that the 

same ephemerides be used on the ground as on board. There are at  least two 

ways in which the two ephemerides could differ: 

The onboard interpolator need not be as accurate as an interpolator 

on the ground. For example, the picture registration program could 

read an ORBIT File using an accurate Adams interpolator, while the 

onboard software may use a Hermite interpolator with a large grid 

spacing. 

0 The ephemerides could conceivably be redetermined during picture 

registration using a data span (tracking and/or landmark) that covers 

the picture instead of depending on the predicted orbit that was used 

on board. 
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In such cases, the net contribution to  the picture registration uncertainty is the 

root-sum-square of the direct and the indirect contributions. 

relatively large onboard ephemeris e r r o r  can be tolerated, due to the factor of 

0.1 mentioned previously. 

In this case, a 

A s  a concrete example, if the horizontal ephemeris uncertainty is 100 meters  

during picture registration but is 200 meters  during onboard attitude control 

(corresponding to a 6-arc second pointing error) ,  the net registration uncertainty 

contribution is v- = 92 meters. A more conservative estimate that 

accounts for correlations is v m  = 101 meters.  Neither of these fig- 

ures  includes the contribution arising from attitude sensor/bias uncertainties. 

Assuming an 11-arc second figure, an additional contribution of 35 meters  must 

be allowed for, leading to  a net uncertainty of d- = 106 meters. 

Throughout the above discussion, the nominal attitude is assumed to be used during 

picture registration. If the actual attitude is used, the errors are further reduced. 

In summary, the onboard interpolator can yield considerable e r r o r s  as long as 

these e r r o r s  are not allowed to  enter  the picture registration programs directly. 

However, the preferred modes of mission operation foreseen (Reference 12) do 

not call for redetermination of orbit o r  attitude on the ground; these parameters 

are to  be telemetered by the spacecraft t o  the users  along with scientific data such 

as the digital Earth-picture data. In view of this, the onboard ephemeris accuracy 

requirement for EOS is primarily governed by the picture registration require- 

ment (since the situation described in Figure A-1 holds). This requirement is 

likely to be in the range of 30 to  100 meters.  The prediction accuracy over a 

4-day span, obtained using ground processing, may be expected to be around 100 

meters  for the EOS orbit (Reference 13). Thus, the desired ephemeris represen- 

tation accuracy is an order  of magnitude better, o r  10 meters  (0.0001 degree o r  

relative e r ror ) .  In view of the preceding discussion, this requirement may 

be assumed to hold for the horizontal positional component. 
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In the case of the SMM and GRE missions, the main purpose of the orbital infor- 

mation is to point an antenna at a TDRSS satellite. Because the TDRSS satellite 

will be at a geosynchronous altitude, a 0.1-degree pointing accuracy requires 

about a 70-kilometer position accuracy. Allowing for a factor of 3, the orbital 

accuracy requirement may be taken to be about 20 kilometers. Because the SMM 

and GRE orbits a r e  more heavily drag perturbed than the EOS orbits, achievable 

prediction e r r o r s  a r e  much larger,  i. e . ,  several kilometers over a 4-day span 

(Reference 14). Thus, the representation accuracy need only be about 10 kilo- 

meters (0.1 degree or 

The evaluation in this study was carried out with respect to an SMM and an EOS2 

type orbits, keeping in mind 10-kilometer and 10-meter (horizontal) represen- 

I 1 relative e r r o r )  in this case. 

I 1 

I tation accuracy requirements, respectively. The epoch orbital elements and 

spacecraft parameters used in this evaluation a r e  shown in Table A-1. 

However, see footnote 1 on page 1-3. The requirement mentioned there is a s  
follows. The prediction accuracy over a 3-day span has been estimated in 
Reference 14 to be about 1 kilometer in  the radial and cross-track directions 
and about 5 kilometers in the along-track component. Assuming that scientific 
data a r e  to be annotated with the above accuracy, the interpolation accuracy 
requirement is an order  of magnitude better, i .e . ,  100 meters  in the radial 
and cross-track directions and 500 meters in the along-track component. 

'In the initial phases of this study, the EOS orbit was assumed to be a 900- 
kilometer altitude orbit, while in the final phases a 700-kilometer altitude was 
assumed. These two orbits a r e  referred to as  EOS (900 km) and EOS ('700 km) 
orbits, respectively, in this document. 

1 
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APPENDIX B - DISCUSSION OF SEMIANALYTIC 
EXTRA POLAT ION FUNCTIONS 

For a small eccentricity orbit, perturbed by J2 alone, an expansion of Cartesian 

coordinates may be carr ied out in powers of e and of J2,  and the expansion may 

be truncated at the desired level of accuracy. This process will help determine 

the required number of harmonics in an ephemeris representation. 

Noting that the Cartesian components in the orbital plane are simply r cos f and 

r sin f, where f is the true anomaly, the inertial Cartesian coordinates can be 

where, for example, R3(Q denotes a rotation angle n around the third axis. 

The orbit plane coordinates can be expanded in a power series in the eccentricity 

(see Reference 15, pages 79 and 80), which to order  e2 is 

r 3 3 2  3 2  
(B-2) a cosf  = - ? e  c ( i - x e  cos-t + + C O S Z ~  + - g e  cos34 

r 3 - Q sin F = ( i  - e'> sin I + 4 sin 24 + -g e* sin32 

The mean anomaly, A , is related to time as (Reference 16) 

2 ignoring J2 and higher effects, where do (the mean orbital frequency), u ~ ,  lo, 
and r j  are constants. 

The factors involving a, W ,  and may also be modeled to  the first power in J,, 

and the net result may be symbolically written as an amplitude a s  (Reference 16) 
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Combining the preceding equations, a Cartesian component may be symbolically 

written as 

X - (Ao t A I &  sin ZA)(b,e + b,sink + b, e sin 24 + b,e2sin3k) (B-5a) 

i. e.,  

where A. and A1 are of the order of the semimajor axis, and bo, bl, b2, b3, cl, 

and c2 are of order  1. 

2 2 
Collecting te rms  and ignoring those terms of orders  e3, J2, and e2J2 yields 

where primed quantities a r e  combinations of correspouciing unprimed ones. , 
I Thus, the order  of magnitude of the extrapolation e r r o r  may be estimated for  

various harmonics, as shown in Table B-1. For a 0.02  eccentricity and a de- 

sired relative e r r o r  of (-70 meters),  the expansion will have to be carried 

I to at  least 3u0t, and possibly to 4uJ. 
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Table B-1. Estimated Extrapolation E r r o r  for Cartesian Coordinates 

Highest 
Harmonic 

I 

, 1 

2 

3 

Dominant 
E r r o r  
Terms e =  0 e =  0.001 e = 0 . 0 1  e = 0 . 1  

Relative E r r o r  Caused 

e, J2, eJ2 10-3 10-3 10-2 10-1 

e 2 , J2, eJ2 10-3 10-2 

e 3 , e ~ ~ ,  J: 10-5 10-3 

Finally, the model for  the amplitude as well as mean anomaly will include poly- 

nomial terms in time, since drag and long-period effects1 are present. These 

can be effectively included in t e rms  such as t, t2, t sin dot, t sin %t, t sin 200t, 

I 
I 

2 

I t2 sin 2 4 ,  etc. The number of such terms required will depend on the span of 

interest and on orbital and spacecraft parameters. 

Thus, the Fourier-power series described in Section 2, Equation (2-1), is seen 

to be a reasonable semiempirical function for Cartesian coordinates. 

A similar  analysis of equinoctial elements and quaternions shows that the Fourier- 

I 

I power series expansion is applicable to these forms as well, with certain differ- 

ences. The semimajor axis, a ,  has secular drag effects and short-period J2 

effects. The elements h and k have long-period effects due to  the presence of I 

'Long-period effects enter via trigonometric functions of fi and d, present in 
RZl(i2) and RZ1(w). The secular ra te  in n, which is about 1 degree/day for 
Sun-synchronous orbits, has a dominant effect in Cartesian coordinate ampli- 
tude, as a 1-degree rotation of the near-polar EOS orbit plane can cause as 
much as a 100-kilometer change in the amplitude of the x or  y component. 
The effect of a secular rate in d is only felt via corrections of the order  of J2. 
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A and c3, secular effects due to the drag effects on eccentricity, and short-period 

52 effects. The elements p and q involve i and n and are again subject to long- 

and short-period effects. A s  for the t rue  longitude (L = n + W + f) ,  in addition to  

its nearly l inear growth at a rate (A + do), it has short-period 

effects due to  both J2 and the eccentricity, since f may be written to  the third 

power in e (Reference 15) as 

. 
mean + Wmean 

e = 0 .001  Harmonic Terms  

The major difference between equinoctial elements and Cartesian coordinates is 

that the number of harmonics needed in a, h, k, p, and q is independent of the 

eccentricity, since only the J2 short-period effects are to  be modeled. Only L 

involves the effect of eccentricity. Based on the preceding discussion, the extrap- 

olation e r r o r s  for equinoctial elements can be estimated as shown in Table B-2. 

e = 0 . 0 1  

10-5 

Table B-2. Estimated Extrapolation E r r o r  for Equinoctial Elements 

e=O.1  

10-2 

10-4 

The equinoctial elements are seen to  offer an  advantage over Cartesian coordi- 

nates in the number of harmonics necessary in the Fourier-power expansion. 
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The quaternions involve sines and cosines of one-half the t rue  anomaly, f. Using 

the expansion for f given previously, it can be shown that a Fourier-power series 

for quaternions will involve only odd half-integral multiples of the orbital frequency. 

(The constant te rm is absent in quaternions. ) Thus, a typical equation for a qua- 

ternion is 

n-3-q n-c3 n- r3 1 = sin (i/2) cos ( ) o sin (i/2) [co5(-y-) eos(f/2) + Sin(-?-) sin (c/Z)] (B-8) 

The expansion for f (from Equation (B-7)) gives 

Products such as sin(B/2) s ine and sin(A/2) cos 2& can be written a s  sums in- 

volving sines and cosines of 1 / 2 ,  3A/2,  5A/2, etc. When the J2 short-period 

effect in quaternions arising from the presence of fl and c3 is  combined with the 

eccentricity effect in f ,  the following table of estimated extrapolation e r r o r s  re- 

sults. 

Table B-3. Estimated Extrapolation Er ro r  for Quaternions 

Highest 
Harmonic 

Dominant 
E r r o r  
Terms 

e, J2 eJ2 

3 2  e J2, eJ2 

e4, Ji, e2J2 

e = O  

10-3 

10-6 

Relative E r r o r  Caused 

e = 0.001 

10-3 

10-3 

10-6 

~~ 

e = 0.01 

10-2 

10-5 

e = O . 1  

10-1 

10-3 
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In brief, equinoctial elements may be the most suitable orbital coordinates for 

extrapolation via a Fourier-power series. 

Finally, in  the absence of drag, the power ser ies  in time can be replaced by ex- 

act trigonometric expressions in fl and w ,  since it is only these long-period 

effects that the power ser ies  in time is supposed to  model. The epoch values 

and mean rates for n and w could be obtained from an averaged Keplerian VOP 
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APPENDIX C - SOFTWARE COMPATIBILITY WITH THE 
GLOBAL POSITIONING SYSTEM 

In examining the ephemeris representations in  Section 3, it was implicitly assumed 

that ephemerides will be determined, predicted, and uplinked to the spacecraft from 

the ground. An  alternative under consideration is to provide the spacecraft with the 

, C. 1 DETERMINISTIC METHOD 

Position can be deterministically computed if four GPS satellites a r e  simultaneously 

visible. However, this condition cannot be guaranteed pr ior  to 1985, and even af ter  

the system is fully operational, geosynchronous satellites at certain longitudes may I 
I fail to see four GPS satellites at  once (Reference 17). Thus, the onboard orbit de- 

termination algorithm will probably have to  be an estimator. 

If a deterministic algorithm were possible, Cartesian positional components would 

be known at any desired time (but not into the future, unless an extrapolation scheme 

were implemented). However, this would still leave open the problem of determin- 

ing velocity and acceleration components. Assuming that some approximate scheme, 

e. g., numerical differencing, can be used for velocity and acceleration computa- 

tions, the easiest way to use  the GPS information in the attitude control cycle would 

be to compute quaternions (or  direction cosines) and body rates from the Cartesian 

coordinates at  every interpolation interval.' The cost of this computation can be 

ascertained from the central column of Table 3-2 by subtracting the interpolation 

cost. This cost is about 11 milliseconds to obtain A and G and 18 milliseconds to 

obtain and is, with an additional cost of about 26 milliseconds if geodetic rather 

than geocentric stabilization is desired (see Appendix D). 

'In order  to implement this technique in practice, the deterministic algorithm will 
have to be augmented by some e,xtrapolation scheme, since a deterministic f i x  
takes at least 6 seconds. 
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C. 2 REGRESSION METHODS 

Since an estimator is more likely to  be adopted than the deterministic method, 

several  approaches to  building an orbit estimation algorithm, o r  filter, are ex- 

amined below. 

C. 2 . 1  Regression Algorithm Using Cartesian Coordinates 

The most common orbit filter uses Cartesian coordinates. The state may include 

position, velocity, and even acceleration components, and a simple orbit propa- 

gation model such as a Cowell o r  a Brouwer-Lyddane orbit generator can be in- 

cluded. In this case, all nine Cartesian components can be obtained at any desired 

t ime and then converted to A and Gj (or  and s) as  was done with the determin- 

istic algorithm (with costs of 11 o r  18 milliseconds as beforej. However, another 

possibility is to  use the filter to obtain the Cartesian components only at grid 

points several minutes into the future' to compute quaternions o r  equinoctial ele- 

ments. The costs in the attitude control cycle in these cases are almost the same 

as if  the quaternions o r  equinoctial elements had been uplinked from the ground, 

i. e., about 18 (15) and 19 to 22 (19 to  22) milliseconds, respectively, for obtaining 

A and G($, is), with an additional 31 and 37  milliseconds, respectively, for geo- 

detic control (Appendix D). The core advantage of equinoctial elements will be 

translated into an advantage in the frequency of accessing the GPS orbit filter. 

The algorithms for conversion from Cartesian coordinates to quaternions and to 

0" are described in Section 3 . 3 . 1 .  For obtaining quaternion rates, the following 

equation can be used: 

/%' ' 8 3  92 41 \ 

This means that the orbit model will have to  include Jo and drag effects, since 
the orbit filter must propagate to  a 100-meter accuragy over a half-hour span. 

1 
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Conversion from Cartesian coordinates to  the equinoctial elements p and q 

was discussed in the text (Equation (3-17)). To obtain the remaining ele- 

ments, the following equations can be used in conjunction with the conversion to 

p and q: 

L = sin-'(s'> + 2-n (C-2a) 

(C-2b) 

where s' and c '  denote sin L and cos L,  respectively, and where n is the cor- 

rect number of periods from epoch which must be kept track of with appropriate 

logic. The additional equations needed to  obtain the remaining elements are the 

following: i 
a =  

2r-1- (2, y L 2 ) - i  

P2 = P2 ; 8 2  = a2 

The equation for a given above is expandable in a binomial series to five terms.  

The equinoctial element rates can be found from (Reference 5) 
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(C-4) 

(Cont'd) 

If inverse trigonometric functions and logic to  count n ,  the number of periods, 

are to be avoided, a modified interface between GPS output and input to the atti- 

tude control software may be possible. Instead of the six elements and six rates 

given in Equation (C-4), seven elements and seven rates can be used, where L 

and 

In the grid-point conversion algorithm, the two equations 4 = cL/2 and I? = - k / 2  

will be added. The attitude control software will be modified to  interpolate on 

the four elements p, q, s, and c and the four rates b, 4, k, and 6 ,  instead of 

the three elements p, q, and L .  Then the equations s = sin(L/S) and c = cos(L/2) 

can be eliminated, and the equation 

have to be added. The net increase in the attitude cycle time will be about 2/3/4 

milliseconds for a 2-/3-/4-point Hermite interpolator. Before adopting this ap- 

proach, the interpolation and extrapolation accuracy of s, h, c, and b must be 

evaluated. (These may be s imilar  to those for quaternions. ) If the attitude cycle 

calls for direction cosines rather than quaternions, then s'= sin L and c'= cos L 

could be used in place of s = sin(L/S) and c = cos(L/2). 

C. 2 . 2  Regression Algorithm Using Equinoctial Elements or Quaternions 

Another approach to  interfacing GPS input with attitude control software that em- 

ploys equinoctial elements o r  quaternions would be to build the orbit filter itself 

on equinoctial elements o r  quaternions. This would eliminate the conversion cost 

are replaced by s, b, c, and 6 (where s = sin(L/2) and c = cos(L/2)). 

= 2b/c (or L = - 2 b / s ,  i f  c is close to  0) will 
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from the attitude control software. The impact of this approach on the orbit filter 

must be analyzed. There are two major aspects to this question: (1) the filter 

must be supplied with a propagator in equinoctial elements o r  quaternions, and 

(2) the observation and its partial derivatives must be expressed in the selected 

coordinates. Some preliminary observations on these two aspects are offered 

below. 

C. 2 . 2 . 1  Orbit Propagation 

The precision needed in the onboard orbit propagator will depend on the practi- 

cable frequency of update using the GPS input. If a high-precision propagator is 

desired, the numerical integration of a fairly complex force model may be neces- 

sary.  This could be done in Cartesian coordinates (Cowell integrator), equinoc- 

tial elements, o r  quaternions. The differential equations in the first two types of 

coordinates are available in the literature (References 5 and 18). One approach 

for propagation of quaternions is to view the frequencies w' 5 [(s s-?), 0, 5 ] 
as gyro rates and integrate them as is standard practice in attitude systems 

(Reference 11). Another approach would be to  develop equations for the attitude 

dynamics of orbital motion. In addition, methods of propagating r and should 

be coupled with integration of quaternions so as to obtain the complete set from 

which ?: and 

When employing equinoctial elements o r  quaternions, conversion to Cartesian 

coordinates will be called for by the force model, since drag effects are most 

easily expressed in Cartesian coordinates. Finally, a state transition matrix 

must be computed. Since the cost of numerically integrating variational equa- 

tions is rather high, an analytic two-body (or two-body and J9) L transition matrix 

will be desirable. Such a matrix is simplest in equinoctial elements. When in- 

tegrating in Cartesian coordinates, cross  partial derivatives with equinoctial 

elements are needed to  obtain the transition matrix in Cartesian coordinates. 

When using quaternions, a similar approach via equinoctial elements can be used. 

Expressions for 7f in terms of p, q, and L (given in Equation (3-18)) and the 

can be recovered, when necessary. 
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expression for $ (given in Equation (C-l)), coupled with the expression for 3 in 

t e rms  of p, q, L, b, 6, and (given in Equation (3-24)), can be used to  obtain the 

necessary partial derivatives. Alternatively, it might be possible to  derive an 

analytic state transition matrix for  < from orbit-dynamical equations expressed 
I directly in quaternions. 

such a matrix is given simply by 

For  a zero-eccentricity orbit, with a two-body model, 

0 

0 

0 
0 \ 
0 

sin [4 0 (t - t*) (C-5) 

where q(t) = @(t,t,) p(tol o = G/rZ = constant. The above form is obtained 

either by comparison with the state transition matrix used in attitude systems (Ref- 

erence 11) o r  by using expressions for  the quaternions in terms of classical o r  

equinoctial elements, as given in Section 3. 

and 

For  a nonzero eccentricity, the situation is more complex since t3 is not constant. 

In the language of attitude dynamics, the system has a nonconstant moment of in- 

ertia r2. Using the expansion for  r/a in powers of the eccentricity (Reference 15), 

which to e3 is 

r / a  = 1 + Tie i 2  + ( -e+-e 3 3  1 cosk + (-:ez) c o s 3 1  + (-$e3)cas3k (C-6) 8 

the angular frequency o I G/rZ can be written as 

'A harmonic oscillator formulation of orbit equations (Reference 19) could possibly 
be used to  advantage for this purpose. 
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The state equation for < partitions, and the equation for q1 and qz is 

with a similar equation holding for q3 and q4. 

Although w is not a constant, the state transition matrix has the form given pre- 

viously in Equation (C-5), since A( t )  and $A(t)dt commute (Reference ZO), except 
0 (t-tm-l w (t-ta w ( t )  that cos [T] and sin [y] are replaced by the cosine and sine of dt , 

t o  
i. e.,  by the cosine and sine of 

where n is the mean notion. Since Jz is being ignored, the above expression 

may, for consistency, be truncated at terms of the order  e or e2 (depending on 
I 

l 

the value of e). Alternatively, i f  an approximate two-body propagator for qua- 

ternions can be developed, the state transition matrix 9 can be obtained simply 

I as (Reference 21) 

with the four independent elements of given by 

(C-10) 
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I€ the orbit propagation model does not have to be too precise, then several other 

alternatives exist. An  analytical two-body o r  two-body and J2 propagation of equi- 

noctial elements o r  quaternions (and r and +) could be used. Again, the propaga- 

tion model for the la t ter  could be derived either via equinoctial elements o r  by 

actually developing dynamic equations for orbital quaternions. Another technique 

would be to use an empirical propagator for equinoctial elements o r  quaternions 

of the type used in their extrapolation (see Section 2). The orbit f i l ter  will then 

adjust the coefficients of the Fourier-power ser ies .  The advantage of this method 

is that the effects of harmonics, drag, and orbital eccentricity a r e  included em- 

pirically in the propagator, so that its accuracy is somewhat better than that of 

an analytic two-body propagator. Another advantage is that this technique is 

equally applicable to geodetic quaternions, for which analytic propagation is cum- 

bersome at best. The disadvantage is that the state size (dimension) is greatly 

increased, and observability problems may exist. Also, the cost of such an orbit 

propagator must be compared with the cost of an analytic propagator. 

C. 2 . 2 . 2  Observation Model 

Regardless of the form of the orbit generator, the GPS observation model is most 

simply expressible in Cartesian coordinates. Thus, conversion to Cartesian co- 

ordinates, as well a s  explicit partial derivatives of these forward equations, must 

be supplied to the observation model. Conversion algorithms from equinoctial ele- 

ments, from geocentric quaternions and r and k, and from geodetic quaternions and 

H and H to Cartesian position and velocity a r e  given in Section 3 and Appendix D. 

Partial derivatives can be obtained from these algorithms by straightforward dif- 

ferentiation. Partial derivatives of Cartesian coordinates with respect to equi- 

noctial elements a r e  given in Reference 5. 
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APPENDIX D - SOFTWARE ADAPTIBILITY TO GEODETIC 
CONTROL REQUIREMENT 

The onboard computation cost of conversion from various forms of orbital des- 

cription to a form suitable for use in the attitude control law for an Earth-pointing 

mission (such as EOS) was examined in Section 3. It was assumed in this analysis 

that the satellite must point towards the Earth 's  center, i. e. ,  it must be geocen- 

trically stabilized. Due to the ellipticity of the Earth, however, this is not equiv- 

d e n t  to pointing normally to the surface of the Earth. The maximum angular 

deviation is about 3 x 10-3 radians for the EOS orbit. I€ geodetic stabilization is 

desired, for example, in  order  to  minimize atmospheric refraction effects in the 

picture-taking process by onboard cameras, then a correction must be computed 

to the direction cosine matrix o r  quaternions a s  obtained in the text. This appen- 

dix examines the computational cost of applying this correction. This cost will 

be added to the attitude control cycle cost, since the correction is orbital position 

dependent. 

The correction can be regarded a s  a rotation by a small  angle 

L I Z  # - 8  

where $ is the geodetic latitude and 8 is the inertial declination = sin- l (z / r )  

around an axis normal to the plane formed by the inertial z-axis and the satellite's 

position vector 2. This definition of the geodetic frame differs somewhat from 

that in the ADGEN System, where the new z-axis is normal to 'r: and to the new 

x-axis. For a perfectly polar orbit, the two definitions coincide. This axis has 

components (L -x,O) in the inertial frame, where p z dw = d n .  
In order  to represent the net rotation as two successive rotations, the components 

of this axis must be found in  the orbital frame. This can be done by premultiplying 

the above vector by the A matrix; the result is 

P '  P 
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2 The angle of rotation A can be expressed as a power series in eE (i. e., the 

Earth figure eccentricity squared, which is approximately 6. 7 x as 

where a, 
r A, = - sin8 COS& 

and where aE  = the Earth 's  equatorial radius x 6378.14 kilometers, sin 6 = z/r, 

and cos 6 = p/r. The maximum value of A is approximately 
1 QE 2 Amad Q - - CE (=  3 x radians for an EOS orbit) 

I 
The te rms  ignored in the above expansion are of the order  of e; = 3 x loe7. 

The expansion was obtained by a series solution to this equation for the geodetic 

latitude $, obtained by requiring that the normal to the ellipsoid pass through 

the satellite position, x, y, z, 

~ 

I Knowing the axis of rotation and the angle of rotation, it is straightforward to 

correct either the quaternions o r  the direction cosine matrix. The corrected 

body rates can be obtained in te rms  of h (the derivative of A in Equation (D-2)). 

I 

i The computational cost of the geodetic correction is shown in Table D-1.' The 

second column in each entry indicates the additional quantities that must be 

I 'The geodetic frame attitude could also be obtained by using an iterative process 
(see subroutine XYZPLH of GTDS o r  subroutine SUBSAT of the ADGEN System). 
Preliminary tes ts  indicate that the amount of computation involved in this meth- 
od is considerably more than that in the series expansion method described above. 

I 

, 
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transmitted specifically fo r  computing the geodetic correction. A n  additional core 

storage of about 1 K  words will be incurred for each quantity over a 4-day span. 

Columns four through six indicate the arithmetic operations involved in comput- 

ing the correction. In the last three columns are shown: (1) the corresponding 

time estimates for the geodetic correction, (2) the basic time estimates (from 

Table 3-2), and (3) the total contribution to  the attitude control cycle. In these 

estimates, a three-point Hermite interpolator is assumed. It can be seen that 

the geodetic control requirement adds significantly to the attitude cycle time. 

A s  for the choice of orbital description, quaternions still have a slight edge in 

t e rms  of t ime over Cartesian or  equinoctial elements, but the proportionate dif- 

ference is less pronounced. 

Another possibility is that the corrected (i. e., geodetic) quaternions and rates 

could be transmitted to  the spacecraft, thereby reducing the onboard cost from 

46 to  16 milliseconds. Then, recovery of position and velocity could be accom- 

plished in the following manner when necessary (Reference 18 and subroutine 

PLHXYZ of GTDS). Two additional quantities, the height H and its rate H, must 

also be transmitted in place of r and ? in the case of geocentric control. The 

equations given below depend only on the first row of A, and therefore they are 

valid even when the geodetic frame is defined as in the ADGEN System. The 

first row of A is determined as 

a12 = (D-5) 

Next, the intermediate quantity 
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2 is obtained by a series expansion in eE . Then, the expressions 

2 N ' =  N t H j  N " =  N'-e,N 

x = N'ailj y = N'Q, ; f = N"aL.5 

give the position, and the velocity is given by the equations 

(D-10) 

The operations required are 40 multiplications and 25 additions; the time required 

is about 10 milliseconds. To this must be added the cost of interpolation of the 

10 quantities b, e, H ,  and H. This cost is about 9/16/22 milliseconds for a 2-/ 

3 -/4-point Hermite interpolator. 

Of course, before adopting the preceding approach, the interpolation and particu- 

lar ly  the extrapolation accuracy of geodetic quaternions must be evaluated. As is 

seen from the expansion for A, for near-polar orbits the geodetic correction may 

be regarded as a periodic effect of the order of magnitude 3 x (J2 correction) o r  

about 20 kilometers, with one-half the orbital period, i.e., the same period a s  

for the J2 correction. 

iod and an amplitude of 0.4 kilometers. ) Thus, any extrapolation model that is 

(The next higher harmonic has one-fourth the orbital per- 
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designed to  incorporate the J2 effect will probably absorb the geodetic correction 

as well. Similarly, the desirable interpolation grid interval for  geodetic quater- 

nions will probably be nearly the same as that for geocentric quaternions. Finally, 

a GPS orbit filter based on geocentric quaternions will car ry  over smoothly to one 

based on geodetic quaternions (see Appendix C), provided that a Fourier-power 

series propagator model is used. 
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